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To extend fossil oil supplies, sustainable feed stocks for the production of useful reagents and 

polymers should be harnessed. In this regard, chemicals derived from plants are excellent 

candidates. While the vast majority of plant sources used for polymer science only contain 

CxHyOz, alkaloids such as caffeine, nicotine, and theophylline possess nitrogen functionality 

that can provide new functions for bio-derived polymers and their synthesis. In this context, 

we exploited the chemistry of theophylline, a natural product found in chocolate and tea, to 

create a cationic “poly(theophylline)” in a straightforward fashion for the first time. We 

demonstrate how this new polymer can be synthesized and used for the creation of narrowly 

disperse cationic microspheres.  
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1. Introduction 

The chemical industry has become reliant on the exploitation of petroleum to produce 

products for our modern society, even when many steps are required for the synthesis of 

functional and refined products.  Researchers are encouraged to harness sustainable feed 

stocks for the production of useful reagents and polymers, especially for high value products 

with larger chemical distance to petroleum. In this regard, chemicals derived from plants are 

excellent candidates because they can be produced on large scale and possess functional 

group diversity. Some examples in this regard include phenols, terpenes, carbohydrates, and 

fatty acids, all of which have been used as sources for bio-derived materials.[1–6] To extend 

this bio-based approach, renewable resources must be manipulated in an efficient manner to 

meet the stringent requirements for application.[7–9] One class of compounds that is not 

commonly observed in polymer science includes alkaloids, which are a diverse class of 

nitrogen-containing organic molecules produced in plants. Some examples include nicotine, 

coniine, ephedrine, caffeine, and cocaine. Their natural production, amine functionality, 

complex hydrogen binding patterns, and in some cases, wide availability, makes their use for 

polymer and material science attractive. Alkaloids that are present in waste streams or in 

cultivated plants offer the greatest promise, most specifically nicotine and xanthines such as 

caffeine, theophylline, and theobromine. Theophylline, among other natural xanthines is 

easily extracted from plant material using selective solvents, such as dichloromethane, 

chloroform, and water.[10] The isolation of theophylline from cocoa is slightly different and 

may require a defattening step using a solvent such as petroleum ether prior to aqueous 

extraction.[11–13] Some examples where alkaloids have been used for materials science 

applications include nicotine-derived room temperature ionic liquids, which have been used 

for chiral recognition of carboxylic acids.[14] Caffeine has been used as a dopant for carbon-

nitride,[15] flexible crystalline materials,[16,17] and recently as a monomer for free-radical 

polymerization by Long et al., demonstrating the feasibility of this approach for the first 
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time.[18] Harnessing alkaloids that possess many functional groups allows for multiple 

derivatization strategies and the production of polymers with additional function. 

Theophylline possesses N-H functionality (Figure 1A) which can be used for the attachment 

of a polymerizable group, and can also react with acids and electrophiles to produce cations, 

which provides easy entry into the field of functional polyelectrolytes.[19–21] Mecerreyes et al. 

previously demonstrated the formation of supramolecular ionic networks derived from 

partially[22] or completely natural sources,[23] however the fabrication of linear cationic 

polyelectrolytes from natural sources is still only weakly covered. Our interest in poly(ionic 

liquids), a subclass of polyelectrolytes comprised of ionic liquid monomer units, is derived 

from their use in novel sensors,[24] actuators,[25,26] and thermoresponsive materials,[27] thus 

demonstrating a potential application for alkaloid-containing polyelectrolytes. Theophylline is 

a commonly consumed alkaloid and is found naturally in cocoa beans and tea, and is currently 

used worldwide to treat asthma.[28] In this context, we are interested in covalent incorporation 

of this alkaloid into polymer chains and the investigation of their structure-property 

relationship and materials potential. We report the first synthesis of a theophylline-derived 

styrenic monomer, which was used to prepare a new cationic polyelectrolyte via radical 

polymerization and its colloidal particles via dispersion polymerization. The ability to form 

disperse microspheres provides the means to exploit these polyelectrolytes in new ways, as 

demonstrated across many fields, including catalysis,[29] sensing,[30,31] optics,[32] and 

biomedical technology,[33] where the synergistic properties of the polyelectrolyte anion/cation 

pair and the microsphere architecture can be harnessed. 

2. Experimental Section  

2.1 Materials 

Theophylline (>99%), 4-vinylbenzyl chloride (>90%), and polyvinylpyrrolidone (PVP, 360 

000 g/mol) were purchased from Sigma Aldrich and used as received. Azobisisobutyronitrile 

(AIBN, 98%) was purchased from Sigma Aldrich and recrystallized from methanol. Sodium 
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hydride (NaH, 50% in mineral oil) was purchased from Alfa Aesar and rinsed with 

diethylether prior to use. Thermogravimetric analysis (TGA) experiments were conducted 

using a Netzsch TG209-F1 apparatus with a heating rate of 10 K min-1 under nitrogen flow. 

Differential scanning calorimetry (DSC) experiments were performed on a Perkin-Elmer 

DSC-1 instrument at a heating/cooling rate of 5-20 K min-1 under nitrogen flow. The melting 

points were determined from the 2nd heating curves. 1H, 13C{1H}, and 19F{1H} NMR spectra 

were collected on a Bruker DPX-400 spectrometer. Gel permeation chromatography (GPC) 

was performed using NOVEMA Max linear XL column with a mixture of 80% of aqueous 

acetate buffer and 20% of methanol. Conditions: flow rate 1.00 mL min-1, PSS standards 

using RI detector Optilab DSP Interferometric Refractometer (Wyatt-Technology). Scanning 

electron microscopy (SEM) was performed using a Gemini LEO 1550 microscope at 3 kV. 

Mass spectrometry was performed on a Xevo G2-XS instrument by Waters for compound 1, 

and on a Thermo Scientific Velos Pro instrument for all others. IR-ATR spectroscopy was 

performed on a Thermo Scientific iS5 instrument. 

2.2 Synthesis 

Synthesis of compound 1. 

Theophylline (5.0 g, 27.75 mmol) and 4-vinylbenzylchloride (8.47 g, 55.51 mmol) were 

added to 100 mL DMSO and cooled to 0 °C in an ice bath. NaH (2.66 g, 111.0 mmol) was 

then added slowly, and the mixture was kept cool for 30 minutes before warming to room 

temperature over 3 hours. The mixture was then slowly added to water (2.5 L) resulting in 

quenching of residual NaH and the formation of a precipitate, which was filtered off and 

rinsed with MeOH multiple times (200 mL in total). The white powder was dried in vacuo 

and identified as compound 1 (4.7 g, 57%). Tm : 185 °C. 1H NMR (400 MHz, DMSO-d6, δ) 

8.27 (s, 1H), 7.43 (d, 2H, 3J = 8 Hz), 7.30 (d, 2H, 3J = 8 Hz), 6.85 (dd, 1H, (dd, 1H, 3J = 18 

Hz (trans), 3J = 10 Hz (cis), CH=CH2). 5.80 (dd, 1H, 1J = 1 Hz, 3J = 18 Hz), 5.25 (dd, 1H, 1J = 

1 Hz, 3J = 18 Hz), 3.41 (s, 3H), 3.20 (s, 3H). 13C{1H} NMR (100.5 MHz, DMSO-d6, δ) 154.3, 



    

 - 5 - 

150.9, 148.3, 142.5, 136.7, 136.4, 136.0, 127.8, 126.3, 114.6, 105.7, 48.7, 29.4, 27.5. FTIR-

ATR: ν (cm-1): 3103, 2975, 2949, 1710, 1655, 1604, 1544, 1513, 1471, 1456, 1403, 1369, 

1327, 1289, 1229, 1191, 1125, 1026, 976, 905, 875, 836, 826, 806, 771, 762, 748, 718, 701, 

639, 620, 566.  HRMS m/z [M]+ calc for C16H16N4O2 296.1273, found 297.1348. 

Synthesis of compound 2. 

Compound 1 (1.54 g, 5.36 mmol) was dissolved in 40 mL DCM followed by the slow 

addition of MeOTf (4.62 g, 28.15 mmol). The solution was stirred for 2.5 hours and then 

precipitated in 300 mL cyclohexane to remove excess MeOTf. The isolated powder was 

redissolved in acetone (60 mL) and precipitated in 600 mL Et2O and dried in vacuo. A white 

powder was isolated and identified as compound 2 (1.95 g, 79%). Tm : 155 °C. Tdec = 305 °C. 

1H NMR (400 MHz, DMSO-d6, δ) 9.44 (s, 1H), 7.51 (d, 2H, 3J = 8 Hz), 7.42 (d, 2H, 3J = 8 

Hz), 6.73 (dd, 1H, 3J = 18 Hz (trans), 3J = 11 Hz (cis), CH=CH2) 5.87 (d, 1H, 3J = 18 Hz), 

5.69 (s, 2H), 5.30 (d, 1H, 3J = 11 Hz) 4.15 (s, 3H), 3.72 (s, 3H), 3.26 (s, 3H). 13C{1H} NMR 

(100.5 MHz, DMSO-d6, δ) 153.0, 150.1, 139.8, 139.4, 137.6, 135.8, 133.4, 128.5, 126.5, 

115.3, 106.9, 50.9, 37.0, 31.3, 28.4. 19F{1H} NMR (376 MHz, DMSO-d6, δ) -77.8. FTIR-

ATR: ν (cm-1): 3067, 1710, 1670, 1637, 1583, 1538, 1514, 1447, 1410, 1353, 1308, 1272, 

1253, 1221, 1155, 1115, 1096, 1054, 1028, 1004, 930, 887, 856, 828, 780, 759, 746, 726, 668, 

636, 603, 574. MS (ESI+): 311.2 ([Cation]+),  771.3 ([(Cation)2 + (Anion)]+). MS (ESI-): 

609.1 ([(Cation) + (Anion)2]-).    

Synthesis of polymer 3.    

Compound 2 (0.776 g, 1.687 mmol) and AIBN (0.0155 g, 0.095 mmol) were dissolved in 1.3 

mL DMSO, purged with N2 gas for 10 minutes, and then heated to 65 °C for 16 hours. The 

viscous mixture was diluted with 25 mL MeCN and precipitated in THF (250 mL) three 

times, and dried in vacuo at 60 °C. The white powder was identified as polymer 3 (0.71 g, 

91%). Mn = 1.54 x 105 g/mol, Ð = 3.8. Tdec = 305 °C. 1H NMR (400 MHz, MeCN-d3, δ) 8.83 

(s, 1H), 7.14-6.54 (m, 4H), 5.61 (s, 2H), 4.13 (bs, 3H), 3.74 (bs, 3H), 3.07 (bs, 3H), 1.43 (bs, 
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2H). 19F{1H} NMR (376 MHz, MeCN-d3, δ) -79.206. FTIR-ATR: ν (cm-1): 3600, 3150, 2900, 

1720, 1668, 1634, 1575, 1538, 1461, 1348, 1253, 1224, 1155, 1050, 1028, 1003, 818, 779, 

770, 759, 745, 636, 604, 574. 

 

Dispersion Polymerization 

Microspheres synthesis was conducted according to a modified procedure.[34] Briefly, 2 (0.1 

g, 0.217 mmol), PVP (5 mg), and AIBN (4 mg) were mixed with the methanol/ethanol solvent 

(1 mL). After cooling to 0 °C the solutions were purged with N2 gas for 10 minutes and then 

heated to 70 °C for 6-8 hours. The microspheres were rinsed with the reaction solvent and 

dropcast on glass slides for SEM analysis. 

3. Results and Discussion  

The key monomer was synthesized by first treating theophylline with 4-vinylbenzylchloride 

under basic conditions in DMSO (Figure 1A). Quenching of the residual NaH and 

precipitation of the hydrophobic product occurred simultaneously upon addition of the 

mixture to water, followed by a MeOH rinse to isolate the pure product 1. We initially tried to 

quaternize 1 with methyl iodide, as reported for similar compounds like caffeine.[35,36] 

However the harsh reaction conditions required (>70 °C, 24 hrs) resulted in undesired side 

reactions (Figure S4). Further attempts to quaternize 1 using methyl iodide under a variety of 

conditions were unsuccessful. Instead, we believed that a stronger methylating agent that can 

be used at room temperature would be more promising. Using excess methyl triflate, N-

methylation of 1 in DCM was complete after three hours at room temperature, and the product 

was precipitated in cyclohexane and diethyl ether to isolate 2 (Figure 1B). In the 1H NMR 

spectra in Figure 1B, a downfield shift was observed for the RN(CH)NR proton (8.27 to 9.44 

ppm), consistent with the quaternization of caffeine.12 We found that extended reaction times 

even with lower amounts of methyl triflate led to parallel decomposition of the product 

(Figure S5), while shorter reaction times in the presence of excess methyl triflate led to 
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cleaner conversion. The melting point was reduced from 185 °C for 1 to 155 °C for 2, 

indicating that the large size and conformational flexibility of the ions resulted in a reduction 

of its melting point. While the synthesis of 2 requires two derivitization steps including the 

use of a strong base and alkylating agent, we find that other cationic monomers used currently 

require similar derivitization processes.[37–39] By using naturally sourced amines we 

demonstrate a greener alternative to the synthesis of cationic monomers.  

This monomer was polymerized by conventional free-radical polymerization followed by 

precipitation in THF three times to remove residual monomer and isolate polymer 3 in good 

yield (91 %). Broadening of the aryl and methyl proton signals was observed along with the 

introduction of new signals at δ = 2.98 and 0.50-1.50 (Figure S9), which are attributed to the 

polymer backbone protons. GPC analysis of 3 revealed a polydisperse sample (Ð =3.8) with 

an apparent number-average molecular weight of 1.54 x 105 g/mol. This polymer possessed 

no discernable glass transition up to a temperature of 250 °C by DSC analysis. Compared to 

its monomer, both 2 and 3 are thermally stable up to 300 °C.  

 

Figure 1: A) Synthetic scheme of compounds 1-3. B) 1H NMR spectrum of 1-3 in DMSO-d6. 
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Table S1: Solubility of 1-3 in various solvents* 
Compound 

# 
H2O MeOH Acetone THF MeCN DMSO CHCl3 Cyclohexane

1 Ins Sol Sol Sol Sol Sol Sol Ins 
2 Ins Sol Sol Sol Sol Sol Sol Ins 
3 Ins Ins Ins Ins Sol Sol Ins Ins 

*Solubility determined at a concentration of 8 mg/mL. 

 

The solubility properties of 1-3 were also elucidated (Table 1). Both 1 and 2 were soluble in 

all polar organic solvents tested (i.e. MeOH, acetone, THF). However 3 was found to be 

insoluble in all solvents except in DMSO and acetonitrile. This dramatic change in solubility 

upon polymerization is consistent with the loss of dissolution entropy by polymerization, i.e. 

polymers dissolve in fewer solvents than their monomers. The solubility difference of 

monomer and polymer in the same solvent can be utilized for the synthesis of uniform 

microspheres by dispersion polymerization.[34] In this method, the sphere size can be tuned by 

adjusting the polarity of the reaction solvent with a co-solvent, where low polarity media 

favours smaller sphere sizes. The use of alcohols for this purpose is convenient as higher 

alcohols are progressively more unipolar and are worse solvents for ionic molecules.[40,41] In 

our case, 2 was mixed with PVP (5 wt%) and AIBN (4 wt%) in different methanol/ethanol 

mixtures (0, 25, 50, and 80 wt% ethanol in methanol) and heated to 70 °C for 6-8 hours in a 

sealed flask. In pure methanol, microspheres varied greatly in size and were overall of poor 

quality in terms of the polydispersity (Figure 2A). However with 25% ethanol addition, a 

bimodal distribution was observed with sphere sizes centered at 0.9 and 1.8 microns in 

diameter, respectively (Figure 2B, and Figure 3A). Narrowly dispersed polymer spheres were 

produced using 50% ethanol, with an average size of 1.43 ± 0.1 microns (Figure 2C), while 

80% ethanol decreased the size of the spheres further to 0.59 ± 0.1 microns (Figure 2D). This 

trend is consistent with similar dispersion polymerizations, where the introduction of an 

antisolvent drives particle nucleation, thus leading to smaller spheres. In our system however, 
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the introduction of antisolvent not only decreases sphere size, but promotes a monomodal 

distribution. 

 

Figure 2: SEM images of micropheres prepared by dispersion polymerization in different 

methanol:ethanol mixtures. A) 100:0 B) 75:25 C) 50:50 and D) 20:80.  

 

Figure 3: Particle size distributions for microspheres prepared in different methanol:ethanol 

mixtures of 75:25 (A), 50:50 (B), and 20:80 (C). 

4. Conclusions 

The synthesis of N-functionalized theophylline with a polymerizable group was accomplished 

and converted in to a cationic salt using methyl triflate in a simple fashion. This monomer was 
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polymerized by free radical polymerization to create a cationic polyelectrolyte. Via dispersion 

polymerization, narrowly dispersed alkaloid-containing polyelectrolyte microspheres were 

prepared whose polydispersity and size could be altered by tuning the reaction medium. Our 

approach for cationic polyelectrolyte synthesis using naturally found alkaloids is attractive 

from a sustainable viewpoint and represents our latest and continuing efforts to prepare 

functional polyelectrolytes from plant-based materials as feedstock sources. While 

theophylline is not the most abundant alkaloid in nature, the methodology presented in this 

work can be applied to more abundant alkaloids. 
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Figure S1: 1H NMR spectrum of 1 in deuterated DMSO. 
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Figure S2: 13C{1H} NMR spectrum of 1 in deuterated DMSO. 
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TR-IR spectrum

 of 1. 
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 Figure S4: 1H NMR spectrum of 1 (0.2 g, 0.6752 mmol) in 10 mL of a 3:1 mixture of DMF 
and MeI at 70 °C for 24 hrs. Experiment performed in deuterated DMSO.  

 
Figure S5: 1H NMR spectra of 1 (1.40 g, 4.872 mmol) with methyl triflate (2.50 g, 14.616 
mmol) in 10 mL DCM. The reaction was mostly complete after 4 hrs, however after 8 hours 
significant decomposition was observed. Experiment performed in deuterated chloroform.   
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Figure S6: 13C{1H} NMR spectrum of 2 in deuterated DMSO. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S7: 19F NMR spectrum of 2 in deuterated DMSO. 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure S8: A
TR-IR spectrum

 of 2. 
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Figure S9: 1H NMR spectrum of 3 in deuterated MeCN. 
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Figure S10: A
TR-IR spectrum

 of 3. 
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Figure S11: TGA plots of 2 and 3 at 10 K/min heating rate under a nitrogen atmosphere. 

 
 


